Square integrability of representations on p-adic symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SQUARE INTEGRABILITY OF REPRESENTATIONS ON p-ADIC SYMMETRIC SPACES

A symmetric space analogue of Casselman’s criterion for square integrability of representations of a p-adic group is established. It is described in terms of exponents of Jacquet modules along parabolic subgroups associated to the symmetric space.

متن کامل

On Square-Integrable Representations of Classical p-adic Groups

In this paper, we use Jacquet module methods to study the problem of classifying discrete series for the classical p-adic groups Sp(2n, F) and SO(2n + 1, F).

متن کامل

ON SQUARE-INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS II

In this paper, we continue our study of non-supercuspidal discrete series for the classical groups Sp(2n, F ), SO(2n+ 1, F ), where F is p-adic.

متن کامل

Polar Decomposition for P-adic Symmetric Spaces

Let G be the group of k-points of a connected reductive k-group and H a symmetric subgroup associated to an involution σ of G. We prove a polar decomposition G = KAH for the symmetric space G/H over any local field k of characteristic not 2. Here K is a compact subset of G and A is a finite union of groups Ai which are the k-points of maximal (k, σ)-split tori, one for each H-conjugacy class. T...

متن کامل

SUBREPRESENTATION THEOREM FOR p-ADIC SYMMETRIC SPACES

The notion of relative cuspidality for distinguished representations attached to p-adic symmetric spaces is introduced. A characterization of relative cuspidality in terms of Jacquet modules is given and a generalization of Jacquet’s subrepresentation theorem to the relative case (symmetric space case) is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2010

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2009.10.026